Postdepolarization potentiation of GABAA receptors: a novel mechanism regulating tonic conductance in hippocampal neurons.
نویسندگان
چکیده
Ambient GABA in the brain activates GABA(A) receptors to produce tonic inhibition. Membrane potential influences both GABA transport and GABA(A) receptors and could thereby regulate tonic inhibition. We investigated the voltage dependence of tonic currents in cultured rat hippocampal neurons using patch-clamp techniques. Tonic GABA(A) conductance increased with depolarization from 15 +/- 3 pS/pF at -80 mV to 29 +/- 5 pS/pF at -40 mV. Inhibition of vesicular or nonvesicular GABA release did not prevent voltage-dependent increases of tonic conductance. Currents evoked with exogenous GABA (1 mum) were outwardly rectifying, similar to tonic currents caused by endogenous GABA. These results indicate that the voltage-dependent increase of tonic conductance was attributable to intrinsic GABA(A) receptor properties rather than an elevation of ambient GABA. After transient depolarization to +40 mV, endogenous tonic currents measured at -60 mV were increased by 75 +/- 17%. This novel form of tonic current modulation, termed postdepolarization potentiation (PDP), recovered with a time constant of 63 s, was increased by exogenous GABA and inhibited by GABA(A) receptor antagonists. Measurements of E(GABA) showed PDP was caused by increased conductance and not a change in the anion gradient. To assess the functional significance of PDP, we used voltage-clamp waveforms that replicated epileptiform activity. PDP was produced by this pathophysiological depolarization. These data show that depolarization produces prolonged potentiation of tonic conductance attributable to voltage-dependent properties of GABA(A) receptors. These properties are well suited to limit excitability during pathophysiological depolarization accompanied by rises in ambient GABA, such as occur during seizures and ischemia.
منابع مشابه
Gabapentin increases a tonic inhibitory conductance in hippocampal pyramidal neurons.
BACKGROUND The mechanisms underlying the therapeutic actions of gabapentin remain poorly understood. The chemical structure and behavioral properties of gabapentin strongly suggest actions on inhibitory neurotransmission mediated by gamma-aminobutyric acid (GABA); however, gabapentin does not directly modulate GABAA or GABAB receptors. Two distinct forms of GABAergic inhibition occur in the bra...
متن کاملTonically activated GABAA receptors in hippocampal neurons are high-affinity, low-conductance sensors for extracellular GABA.
In the hippocampus, two distinct forms of GABAergic inhibition have been identified, phasic inhibitory postsynaptic currents that are the consequence of the vesicular release of GABA and a tonic conductance that is activated by low ambient concentrations of extracellular GABA. It is not known what accounts for the distinct properties of receptors that mediate the phasic and tonic inhibitory con...
متن کاملACCELERATED COMMUNICATION Tonically Activated GABAA Receptors in Hippocampal Neurons Are High-Affinity, Low-Conductance Sensors for Extracellular GABA
In the hippocampus, two distinct forms of GABAergic inhibition have been identified, phasic inhibitory postsynaptic currents that are the consequence of the vesicular release of GABA and a tonic conductance that is activated by low ambient concentrations of extracellular GABA. It is not known what accounts for the distinct properties of receptors that mediate the phasic and tonic inhibitory con...
متن کاملMultiple actions of methohexital on hippocampal CA1 and cortical neurons of rat brain slices.
To explore the mechanism by which methohexital (MTH) activates epileptiform activity in patients with epilepsy, we examined the effects of MTH on hippocampal CA1 and neocortical neurons via extracellular and whole-cell patch-clamp recordings in rat brain slices. Perfusion of slices with 10 to 100 microM MTH caused no significant change in glutamatergic transmission in the hippocampal CA1 region...
متن کاملBrief Communication Low Ethanol Concentrations Selectively Augment the Tonic Inhibition Mediated by Subunit-Containing GABAA Receptors in Hippocampal Neurons
In central neurons, a tonic conductance is activated by ambient levels of the inhibitory transmitter GABA. Here, we show that in dentate gyrus granule cells, where tonic inhibition is mediated by subunit-containing GABAA receptors, this conductance is augmented by low concentrations (30 mM) of ethanol. In contrast, the tonic inhibition mediated by 5 subunit-containing receptors of CA1 pyramidal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 30 22 شماره
صفحات -
تاریخ انتشار 2010